Technical Grade Bis(2-chloro-1-methylethyl) Ether

$$CI$$
 CI

Molecular Weight: 171.07 CAS Registry No.: NA

Technical Grade BCMEE

BCMEE

2-Chloro-1-methylethyl (2-chloropropyl) ether

Bis(2-chloro-*n*-propyl) ether

BCMEE Use/Occurrence

- By-product of propylene glycol and propylene oxide manufacture
- Solvent in paint and varnish removers, spotting agents
- Intermediate in dye synthesis
- Active ingredient in the nematocide Nemamorte® (Japan)

Carcinogenicity of BCMEE

- Carcinogenicity in humans:
 - No data

- Carcinogenicity in animals:
 - Oral gavage studies in mice (NTP, 1982)
 - Oral gavage studies in rats (NCI, 1979)
 - Dietary studies in mice (Mitsumori et al., 1979)

Tumors in Male Mice (NTP, 1982)

Tumor Site and	Гуре		Dose, mg/kg _{bw}		
		0	100	200	
Males					
Lung:	Adenoma	5/50	13/50*	11/50	
Alveolar/	Carcinoma	1/50	2/50	2/50	
Bronchiolar	Adenoma or carcinoma	6/50	15/50*	13/50	
Liver	Adenoma	8/50	10/50	13/50	
	Carcinoma	5/50	13/50*	17/50*	
	Adenoma or carcinoma	13/50	23/50*	27/50*	
	Metastases to lung	1/50	4/50	3/50	
Stomach / Forestomach	Squamous-cell papilloma	0/49	1/50	1/50	

^{*} Significant increase above controls (p < 0.05 by Fisher Exact test).

Tumors in Female Mice (NTP, 1982)

Tumor Site and T	Гуре	Dose, mg/kg _{bw}		
		0	100	200
Females				
Lung:	Adenoma	1/50	4/50	8/50*
Alveolar/	Carcinoma	0/50	0/50	2/50
Bronchiolar	Adenoma or carcinoma	1/50	4/50	10/50*
Stomach / Forestomach	Squamous-cell papilloma	0/50	0/49	2/49
	Squamous-cell carcinoma	0/50	0/49	1/49

^{*} Significant increase above controls (p < 0.05 by Fisher Exact test).

Non-positive Findings

• Rat oral gavage studies (NCI, 1979)

• Mouse dietary studies (Mitsumori *et al.*, 1979)

Genotoxicity of BCMEE

- Bacterial assays:
 - Mixed findings in *Salmonella* reverse mutation assays (with and without metabolic activation)
 - Non-positive findings in Escherichia coli

Genotoxicity of BCMEE (cont.)

- Mammalian cell assays
 - Positive in mouse lymphoma forward mutation assay without metabolic activation
 - Positive for chromosomal aberrations (+S9) and
 SCE (+/-S9) in CHO cells
 - Positive for S-phase synthesis in mouse hepatocytes; Negative UDS

Structure-Activity Comparisons

- Carcinogenicity of other haloethers:
 - bis(chloroethyl) ether (BCEE)
 - bis(chloromethyl) ether (BCME)
 - chloromethyl methyl ether (CMME)

BCMEE BCEE BCME CMME

BCMEE: Summary

- Animal evidence for carcinogenicity:
 - Induction of liver tumors in male mice
 - Induction of lung tumors in male and female mice
 - Some rare forestomach tumors in mice
- Other relevant evidence
 - Genotoxicity, structure-activity analogies

Evidence of the Carcinogenicity of 1-Chloro-4-nitrobenzene

Molecular Weight: 157.56 CAS Registry No.: 100-00-5

Carcinogenicity Studies of 1-Chloro-4-nitrobenzene

Tumor incidence in HaM/ICR mice administered 1-chloro-4-nitrobenzene in feed for 18 months (Weisburger *et al.*, 1978).

Tumor Type	Dose (ppm in feed)					
	0 (simultaneous)	0 (pooled)	3,000	6,000		
Males						
Hepatocellular carcinomas	1/14 (7%)	7/99 (7%)	4/14 ^a (29%)	0/14 (0%)		
Vascular tumors	0/14 (0%)	5/99 (5%)	2/14 (14%)	4/14 ^a (29%)		
Females						
Vascular tumors	0/15 (0%)	9/102 (9%)	3/20 (15%)	7/18 a (39%)		

^a Different from pooled controls (p<0.05)

Other Relevant Data

- Produced mutations in some, but not the majority, of tests in *Salmonella*
- Produced DNA strand breaks in vitro and in vivo
- Produced sister chromatid exchanges and chromosomal aberrations in vitro
- Metabolized to the carcinogen,
 4-chloroaniline

Summary: 1-Chloro-4-nitrobenzene

- Vascular tumors in male and female mice
- Hepatocellular tumors at the lower of two doses in male mice
- Genotoxic effects in mammalian cells *in vitro* and *in vivo*
- Metabolism to a known carcinogen

Evidence of the Carcinogenicity of Estragole

Molecular Weight: 148.20 CAS Registry No.: 140-67-0

Use, Production and Occurrence

- Estragole is used for its flavor and fragrant properties in numerous food products, drinks, perfumes, cosmetics, soaps and detergents.
- Production
 - U.S. TSCA >1 million pounds in 1990
 - OECD "high production volume" chemical in 1997
- Major component (30 to 75 %) of volatile oils of anise, basil, bay, tarragon, and other herbs
- Minor component of oils of fennel, marjoram, and chervil, oil of turpentine, and tobacco smoke

Carcinogenicity Studies of Estragole

- Humans
 - No evidence available
- Animals (Drinkwater et al., 1976; Miller et al., 1983; Wiseman et al., 1987)
 - Eight cancer bioassays
 - CD-1, B6C3F₁, and A/J mice
 - Oral, i.p., and s.c. administration

Carcinogenicity Studies of Estragole

Route of exposure	Treatment	Sacrifice	Result ^a
Test animal		(months)	(liver tumors)
<u>oral</u>			
Male newborn CD-1 mice	10 gavage doses	14	+ (p<0.001)
Female newborn CD-1 mice	10 gavage doses	14	- (p=0.16)
Female CD-1 mice	diet 12 months,	20	+ (p<0.001)
	2 dose groups		+ dose-response
<u>i.p.</u>			
Male newborn CD-1 mice	4 doses	12	+ (p<0.001)
Male newborn B6C3F ₁ mice	4 doses	18	+ (p<0.001)
Male newborn B6C3F ₁ mice	1 dose	10	+ (p<0.001)
Female A/J mice	24 doses	8	- (lung tumors)
<u>s.c.</u>			
Male newborn CD-1 mice	4 doses,	15	+ (p<0.05)
	2 dose groups		+ dose-response

^a Incidence of hepatocellular carcinoma relative to vehicle controls, except in the A/J mouse study which assayed only for lung tumors.

ОЕННА

Carcinogenicity Studies of 1'-Hydroxyestragole, the Putative Toxic Metabolite of Estragole

- 1'-Hydroxyestragole induced high incidences of liver tumors in mice (Drinkwater *et al.*, 1976; Miller *et al.*, 1983; Wiseman *et al.*, 1987)
 - diet for 12 months to adult female CD-1 mice
 - i.p. newborn male CD-1, B6C3F₁, CeH/HeJ, or C57Bl/6J mice
 - s.c. newborn male CD-1 mice
- No increases in tumors in rats given 20 s.c. injections and sacrificed at 24 months

Carcinogenic Mode of Action

- Mechanism is the same as safrole (a Prop. 65 listed carcinogen)
- Six equivalent DNA adducts characterized for estragole and safrole
- Inhibition of the sulfation step significantly reduces DNA adduct formation and prevents liver tumor formation.

Other Relevant Data -- Genotoxicity

- Reverse mutations in *Salmonella*: mixed results for estragole and 1'-hydroxyestragole
- UDS in rat hepatocytes: positive for estragole and 1'-hydroxyestragole
- UDS in human cell lines: positive for estragole and 1'-hydroxyestragole
- DNA adducts and abasic sites observed
- DNA adduct levels in mice in vivo of different alkenylbenzene compounds, including estragole, correlated well with liver tumor incidences

Other Relevant Data -- SAR

- Structural similarities to other many alkenylbenzene compounds observed to be carcinogenic
 - safrole, 1'-hydroxysafole
 - methyleugenol, 1'-hydroxymethyleugenol
 - others: *cis*-asarone, *trans*-asarone, 1'-hydroxy-2',3'-dehydroestragole, 1'-acetoxyestragole, 1'-hydroxy-2',3'-dehydrosafrole, 1'-acetoxysafrole, 1'-hydroxyelemicin, and 1'-acetoxyelemicin

Summary

- Estragole induced liver cancer in multiple strains and both sexes of mice exposed by several different routes of administration.
- Genotoxicity
- Chemical-structural analogies with recognized carcinogens
- Relatively clear understanding of the carcinogenic mode of action

Trichloroacetic Acid ("TCA")

Molecular Weight = 163.39 CAS Registry No. 76-03-9

TCA use/occurence

- Synthetic intermediate
- Minor uses: medication, reagent
- Former use: selective herbicide (principally as the Na⁺ salt). The most recent registration was cancelled in 1992
- TCA is one of the major by-products of the disinfection of water by chlorination

TCA occurrence (ii)

- Concentrations measured in U.S. drinking water supplies in one study ranged from 4 to 103 μ g/L
- Formed (with other chloroacetic acids, halomethanes *etc.*) by reaction of Cl₂ or hypochlorite with organic substances, *e.g.* humic acid.
- TCA is also found in other situations where water is chlorinated, such as irrigation, swimming pools, and pulp mill effluents.

Carcinogenicity of TCA

- Carcinogenicity in humans:
 - No data
- Carcinogenicity in animals:
 - A number of bioassays have been reported
 - TCA is a hepatocarcinogen in the mouse. The male is more sensitive than the female.
 - In a single rat study, TCA was hepatotoxic but not hepatocarcinogenic.

Carcinogenicity Studies of TCA

Route	Species	Strain	Sex	Tumor site, type	IARC eval.?	Authors
oral (drinking water)	Mouse	B6C3F ₁	M	hepatocellular adenoma (ad.) and carcinoma (ca.)	yes	Herren-Freund <i>et al.</i> , 1987
oral (drinking water)	Mouse	B6C3F ₁	M, F	hepatocellular ca. in males only	yes	Bull et al., 1990
oral (drinking water) #1	Mouse	B6C3F ₁	M	hepatocellular ad. and ca.	no	DeAngelo and Daniel,
oral (drinking water) #2	Mouse	B6C3F ₁	M	hepatocellular ad. and ca.	no	1990; DeAngelo, 1991
oral (drinking water)	Mouse	B6C3F ₁	F	hepatocellular ad. and ca.	no	
oral (drinking water)	Mouse	B6C3F ₁	F	hepatocellular ad. and ca.	no	Pereira, 1996
oral (drinking water)	Mouse	B6C3F ₁	F	hepatocellular ca.	no	Pereira and Phelps, 1996.
oral (drinking water)	Rat	F344	M	No increases in tumor incidence	no	DeAngelo and Daniel, 1992; DeAngelo, 1991; De Angelo <i>et al.</i> , 1997.

Hepatocellular Tumors in male B6C3F₁ mice receiving ENU and/or TCA

Herren-Freund et al. (1987)

Treatme	ent	Result								
ENU, mg/kg	TCA, mg/L	N	Mice with Adenomas	Adenomas / mouse	Mice with Carcinomas	Carcinomas/ mouse				
10	5	28	11 (39%)	0.61±0.16	15 (54%)	0.93±0.22				
2.5	5	23	6 (26%)	0.30 ± 0.12	11 (48%)	0.57 ± 0.21				
2.5	2	33	11 (33%)	0.42 ± 0.12	16 (48%)	0.64±0.14				
0	5	22	8 (36%)	0.50 ± 0.16	7 (32%)	0.50±0.17				
10	0	23	9 (39%)	0.52±0.15	9 (39%)	0.57±0.20				
2.5	0	22	1 (5%)	0.05±0.05	1 (5%)	0.05±0.05				
0	0	22	2 (9%)	0.09±0.06	0 (0%)	0				

Significantly different from control (P < 0.01 by Fisher's exact test):

Carcinogenic effect Tumor promoting effect

Hepatocellular lesions in male B6C3F₁ mice receiving TCA in drinking water

Bull et al. (1990)

Treatm	ient		Re	esult: Num	ber of les	ions (num	ber of mic	re)
TCA,	Duration	N	Total	Lesions]	Diagnosis	of lesions:	
g/L	(weeks)		lesions	examined	Normal	Hyper-	Adenoma	Carcin-
						plastic		oma
2	52	24	30 (19 ^b)	16 (11)	1 (1)	10 (9)	1 (1)	4 (4)
2	37	11	5 (4 ^a)	5 (4)	0	2 (2)	0	3 (3)
1	52	11	7 (5 ^b)	7 (5)	0	3 (1)	2 (2)	2 (2)
0	-	35	2 (2)	2 (2)	1 (1)	1 (1)	0	0

Significantly increased (a P < 0.05, b P<0.01) relative to control, by Fisher's Exact Test.

Hepatocellular tumors in B6C3F₁ mice receiving TCA in drinking water

DeAngelo and Daniel (1990); DeAngelo (1991)

- Experiment 1: Male mice; 0, 0.05, 0.5 or 5 g TCA/L drinking water (0, 8, 71 and 595 mg/kg bw/day) for 60 weeks.
 - Hepatocellular adenomas + carcinomas increased in mice receiving 0.5 (37.9%) and 5 g TCA/L (55.2%), compared to controls (13.3%)
 - Not significantly increased in mice receiving 0.05 g/L TCA.
- Experiment 2: Male mice; 0 or 4.5 g TCA/L drinking water (0 and 583 mg/kg bw/day) for 94 weeks.
 - Hepatocellular tumors increased in exposed (86.7%) vs. controls (15%).
- Experiment 3: Female mice; 0, 0.5 or 4.5 g TCA/L drinking water (0, 71 and 583 mg/kg bw/day) for 104 weeks.
 - Hepatocellular tumors (ad. and ca.) increased in mice receiving 4.5 g
 TCA/L (60%) compared to controls (7.7%).
 - Not significantly increased in mice receiving 0.5 g TCA/L.

Hepatocellular lesions in female B6C3F₁ mice receiving TCA in drinking water Pereira (1996)

Treatn	nent	Incidence of lesions: Number of animals (percentage of animals)				
TCA, mM	Duration (days)	N	Foci of altered hepatocytes	Hepato- cellular Adenoma	Hepato- cellular Carcinoma	
20	360	20	0	2 (10)	5 (26.3)	
	576	18	11 (61.1)	7 (38.9)	5 (27.8)	
6.67	360	19	0	3 (15.8)	0	
	576	27	9 (33.3)	3 (11.1)	5 (18.5)	
2.0	360	40	3 (7.5)	3 (7.5)	0	
	576	53	10 (18.9)	4 (7.6)	0	
0	360	40	0	1 (2.5)	0	
	576	90	10 (11.1)	2 (2.2)	2 (2.2)	

Hepatocellular lesions in female B6C3F₁ mice receiving TCA in drinking water Pereira and Phelps (1996)

Treat-	Mean number of lesions per mouse ± standard error (percentage incidence)									
ment	31 weeks				52 weeks					
TCA mM	N ^b	Foci / mouse	Adenomas / mouse	N	Foci / mouse	Adenomas / mouse	Carcinomas / mouse			
20	10	0 (0)	0 (0)	19 +1	0 (0)	0.15±0.11 (10)	0.5±0.18 e (25)			
6.67	10	0 (0)	0 (0)	19	0 (0)	0.21±0.12 (15.8)	0 (0)			
2.0	15	0 (0)	0 (0)	40	0.08±0.04 (7.5)	0.08±0.04 (7.5)	0 (0)			
0	15	0.13±0.13 (6.7)	0.13±0.13	40	0 (0)	0.03±0.03 (2.5)	0 (0)			

Significantly different from control group by Mann-Whitney test: P < 0.05.

Male Fischer 344 rats receiving TCA in drinking water

DeAngelo and Daniel (1992); DeAngelo (1991); DeAngelo *et al.* (1997)

- Male rats; 0.0, 0.05, 0.5 or 5 g TCA/L drinking water (0, 3.6, 36 and 378 mg/kg bw/day) for 104 weeks.
 - No significant increase in hepatocellular tumors in exposed rats.

Tumor initiation/promotion studies

All Studies:

TCA Route = Oral (drinking water)

Initiator	Species	Strain	Sex	End point	Result	Authors
ENU	Mouse	B6C3F ₁	M	hepatocellular tumors	Carcinogenicity +ve, promotion -ve	Herren- Freund <i>et</i> <i>al.</i> , 1987
MNU	Mouse	B6C3F ₁	F	Liver tumors & foci (eosinophilic, basophilic)	Carcinogenicity +ve, promotion +ve	Pereira and Phelps, 1996
MNU	Mouse	B6C3F ₁	F	Liver tumors & foci (eosinophilic, basophilic)	Promotion +ve	Pereira et al., 1997
DEN, Partial Hepatectomy	Rat	Sprague- Dawley	M	γGT positive liver foci	Promotion +ve	Parnell <i>et al.</i> , 1988

Carcinogenicity Studies of TCA: Results

• Mice:

- Multiple independent studies in a single strain (B6C3F₁).
- Liver adenoma and carcinoma.
- All studies positive.
- Both sexes.

• Rats:

- Single study.

 No carcinogenic effect observed.

Genotoxicity of TCA:

standard assays

- Bacterial Mutagenicity:
 - mostly negative.
- Mammalian cells in vitro:
 - very weak: pH effect?
- Mammals in vivo: chromosomal effects
 - micronuclei (inconsistent, high dose only?),
 aberrations, sperm abnormalities.

Genotoxicity of TCA:

oncogene & DNA effects

- DNA strand breaks.
 - Some positives: mice more sensitive than rats.
- Oxidative DNA damage.
 - Weak positive or negative results: inconsistent.
- Effects on proto-oncogenes & oncoproteins.
 - Consistent changes in tumors: different from DCA.
- DNA Synthesis.
 - Increases in mice associated with cell proliferation (not repair).

Structure-Activity Comparisons

- Other chlorinated acetic acids:
 - Dichloroacetic acid causes liver cancer in mice
 - Monochloroacetic acid not carcinogenic to mice or rats,
 but severe toxicity might mask response
- Other chlorinated aliphatic compounds:
 - TCE and PCE (of which TCA is a metabolite) are identified as carcinogens for the purposes of Proposition 65.

Mechanism: Alternatives proposed (i)

Genotoxic / DNA reactive?

- For:
 - Some clastogenic effects
 - DNA strand breakage and oxidative damage.
- Against:
 - Most genotoxicity results negative: the few "positives" are equivocal or inconsistent.
 - TCA not intrinsically reactive.
 - No evidence of metabolism to a reactive intermediate.
- Conclusion:
 - Probably not.

Mechanism: Alternatives proposed (ii)

"Non-genotoxic" (i.e. not DNA reactive):

- Peroxisome proliferation (PP)?
 - For:
 - Observed in rodents exposed to TCA and DCA.
 - More marked in mice than rats.
 - Against:
 - Not a large effect, even in mice.
 - Compare DCA and TCA: PP similar, but tumorigenic effects, oncogene activation different.
 - Reports of DNA oxidative damage not substantiated.
 - Conclusion:
 - PP occurs, but its role in TCA carcinogenesis (if any) is unclear.

Mechanism: Alternatives proposed (iii)

- Enhanced cell proliferation due to cytotoxicity
 - For:
 - Proliferation observed in mice
 - Against:
 - Probably not sufficient alone to explain tumor formation.
 - Cause or effect?
- Other growth regulatory effects
 - For/Against:
 - Maybe: insufficient detail to evaluate.
- Overall Conclusion: Insufficient information to determine and characterize mechanism.

Trichloroacetic acid: Summary.

- Animal evidence for carcinogenicity:
 - Positive in both sexes of one strain of the mouse, in multiple experiments.
 - Tumor promoter in rat and mouse liver.
 - negative in rat (1 study).
- Weak (much negative or equivocal) evidence of genetic toxicity.
- Mechanistic arguments against human relevance, but no clear proof of mechanism(s).

